Главная • О сайте • О математиках • О математикеФилдсовская премияФорум
Школьникам: Занимательная математика • Логические задачи
Студентам: Высшая алгебраВекторная алгебраАналитическая геометрияЧисленные методы
 

Математика и физика: 1930—1960 годы

К сожалению, немецкая физико-математическая школа (включая австро-венгерскую) была рассеяна нацизмом. Выжившая часть звезд уехала в США и воспитала послевоенное блестящее поколение американских ученых. Как мне рассказывали французские физики, когда я работал в Париже в 1991 г., во Франции развитие квантовой физики пресек герцог Луи де Бройль, сыграв роль Лысенко во французском обществе физиков, несмотря на личный вклад в начало ее развития. Говорят, он оказался редкостно глуп и невероятно упорен в своей глупости. И при этом он имел громадное влияние. Все это вместе дало очень плохие результаты.

В старой России не было серьезной школы теоретической физики до Первой мировой войны. Первые русские звезды мировой теоретической физики (Гамов, Ландау, Фок) возникли в 20-30-х гг. прямо из контакта с лучшей ультрасовременной европейской школой квантовой теории Н.Бора. Гамов вскоре остался на Западе, а Ландау и Фок создали в Москве и Ленинграде сильные школы. Мне кажется, Ландау вынес свой подход к созданию школы и стилю ведения семинара из общения с кругом Гильберта. Ландау разработал и реализовал в 30-50-е гг. фундаментальную идеологию - как и чему следует учить физика-теоретика. Мы еще обсудим его схему позднее. В СССР новые школы Ландау и Фока дополнились «автохтонами России», - сообществом, выросших из сильной школы классической физики Л.И.Мандельштама и др., особенно сильной в прикладных разделах; некоторые из них тоже внесли важный вклад в современную квантовую теорию.

Любопытна история того, как круг чистых математиков 30-х гг. научно не принял, даже оттолкнул такую яркую личность, как Боголюбов. Конечно, дефекты в его совместных работах с Н.М.Крыловым были реальны, но разгром этих работ А.А.Марковым в 1930 г. был чрезмерен. После этого Боголюбову не верили. Он решил проблему Лузина о почти периодических функциях - проверять попросили Меньшова, который подменял серьезную проверку цеплянием - всегда чисто формально. Он и увидел множество ничтожных огрехов. Они поставили работу под сомнение. Будучи студентом в конце 50-х гг., я слышал от отца, что была такая работа Боголюбова в 30-х гг., но сомнения так и не развеялись. Позднее я узнал, что в мировой литературе по теории функций эта работа считается давно проверенной и классической, и сказал об этом отцу. Он презрительно отозвался о стиле Меньшова подменять проверку цеплянием. Так или иначе, Боголюбов со своим интуитивным, неточным стилем представлять доказательство, был отвергнут. Это оказалось для него полезным. Он потратил годы на изучение квантовой физики. Позднее, сделав в 40-х гг. блестящие работы по теории сверхтекучести, ему пришлось испытать серьезные трудности, входя в круг физиков: непривычный для него характерный стиль реальной и острой критики со стороны Ландау отравил ему первые выступления. С этой критикой он позднее справился (хотя и не сразу) и убедил Ландау, но отношения у них всегда оставались напряженно-ревнивыми. Играло роль и то, что личности типа Виноградова и Лаврентьева не без успеха использовали слабости Боголюбова, его склонность поддерживать сомнительных людей, в своей борьбе с «еврейской физикой». Позднее, в 70-е гг., после ссоры с Виноградовым, Боголюбов выкинул из своей головы весь этот балласт противных ссор. Все эти годы Боголюбов очень тщательно скрывал от своих друзей типа Лаврентьева что именно он думает о его претензиях считать себя физиком, не зная что это такое - современная теоретическая физика (хотя Лаврентьев был очень талантлив). Он говорил мне в начале 70-х гг., что круг математиков не представляет себе, сколько нужно выучить, чтобы понять, о чем говорят современные квантовые физики, облачая свои мысли в очень образные выражения, которые я не буду пытаться здесь передавать.

В конце 30-х гг., как мне рассказывал отец, они пригласили Ландау в «Стекловку» прочесть им курс лекций - что такое квантовая механика и статфизика. Прослушав его, они были очень раздражены, им сильно не понравилась логическая путаница, как говорил мне отец. Потом, после выхода книги фон Неймана, двое из них - Колмогоров и он - с удовольствием ее прочли. Аксиоматически точный стиль - вот что им было нужно. Они хотели понять логику, а не квантовую механику. Третий - Гельфанд - решил выучить этот кусок физики так, как его представляют себе физики. Он присоединился к семинару Ландау, провел там десяток лет (или более). Гельфанд был единственным из прикладных математиков, который мог говорить с реальными физиками, а не только с механиками-классиками, в период выполнения важных закрытых задач в 40-50-х гг. Он получил от физики много и для своей математики, - например, начал теорию бесконечномерных представле­ний, подхватив ее начало из мира физиков, решил поставленную физиками обратную задачу теории рассеяния (в этих исследованиях участвовали также Наймарк, Левитан и Марченко). Его ученик Березин вынес из семинара Ландау задачу построения фермионного аналога интеграла и т.д.

Кроме названных, остальные ничего не учили более. Контакт с квантовой физикой закрылся для них; правда, бескорыстный лю­битель науки Меньшов и без тени понимания ходил на физический семинар еще много лет. Я думаю, что здесь перечислены все представители старшего поколения знаменитых московских математиков 30-40-х гг., что-то знавшие о квантовой физике XX в. Кстати, еще Хинчин пытался начать заниматься обоснованиями статистической физики, но его попытки были встречены физиками с глубоким презрением. Леонтович говорил моему отцу, что Хинчин абсолютно ничего не понимает. Из выдающихся ленинградских математиков в молодости А.А.Марков написал полезную работу об упорядочении основ теории идеальной пластичности, но позднее к естественным наукам не возвращался. Такой блестящий геометрический талант как А.Д.Александров, писал какую-то чушь, выводя из аксиом преобразования Лоренца - стыдно даже вспоминать труды его школы на эту тему; хотя он и был физиком по образованию, но тут его склонность к аксиоматизации привела к абсурду. Квантовая физика пришла в ленинградскую математику позже, в 60-х гг., вместе с Л.Фаддеевым, который был в юности учеником Фока, прежде чем стал аспирантом Ладыженской и стал доказывать строгие теоремы. Впрочем, уши физика, дыры, вылезали из его доказательств. Лучшее он сделал, когда вернулся к роли квантового математического физика, близкого к кругу физиков.

Особую роль в московской математике длительный период играл Колмогоров. Будучи идеологом теории множеств, аксиоматизации науки и оснований математики, он в то же время обладал замечательным умением решить трудную и важную математическую проблему, а также - быть разумным и дельным в приложениях, в естественных и гуманитарных науках. От аксиоматизации теории вероятностей на базе теории множеств он мог перейти к открытию закона изотропной турбулентности, от математической логики и тонких контрпримеров в теории рядов Фурье - к эргодической теории, к аналитической теории гамильтоновых систем, решая абсолютно по-новому старые проблемы. Он внес немаловажный вклад даже в алгебраическую топологию.

В то же время, у него были странные, я бы сказал психические, отклонения: в образовании - школьном и университетском -он боролся с геометрией, изгонял комплексные числа, стремился всюду внедрить теорию множеств, часто нелепо. Болтянский рассказывал мне в лицах смешную историю, как Колмогоров изгонял комплексные числа из школьных программ. Короче говоря, как это ни нелепо, он имел те же самые идеи в образовании, что и бурбакизм, иногда даже более нелепые. Современной теоретической физики он не знал, базируясь лишь на классической механике, как естествоиспытатель.

У Колмогорова, однако, был замечательный дар - находить узловые точки, открывать то, что будет впоследствии нужно очень многим. Посмотрите, как широко разошлись в современной науке конца XX в. его открытия 50-х гг. в динамических системах (вместе с его учениками). По счастью, сверхпрестижный Московский университет с его новым шикарным дворцом был отдан Сталиным под руководство крупного ученого и - что было весьма редко в этом поколении ведущих математиков-администраторов - порядочного человека, И.Г.Петровского. Идейное руководство математическим образованием было фактически отдано Колмогорову. Особенно важно было то, что на семинары мехмата и на заседания Математического общества во второй половине 50-х гг. по вечерам собирались все математики Москвы, кто хоть чего-то стоил творчески. Я нигде впоследствии не встречал во всем мире столь мощного, сконцентрированного в одном месте сообщества, покрывающего вес разделы математики. Таким был мехмат, когда я на нем учился. В обществе блистали молодые ученики Колмогорова - Арнольд, затем Синай, выросшие из теории множеств, теории функций действительного переменного, теории меры и динамических систем. Области, которыми они занимались у Колмогорова, представлялись мне последним взрывом идей теории множеств, лебединой песней Колмогорова. Это было очень модно, но мне теория множеств не нравилась. Я считал, что это - лишь наследие 30-х гг., и слишком многих подлинно новых идей здесь уже не будет.



2007 (c) Ильдар Насибуллаев. Все права защищены. «Математика, доступная для всех» является частью «Научно-образовательного портала».
Перепечатка материалов возможна в объеме не более 5 страниц с указанием гипертекстовой ссылки на источник http://math.originweb.info/ и автора статьи.
Время создания страницы 0.0013 сек.