Главная • О сайте • О математиках • О математикеФилдсовская премияФорум
Школьникам: Занимательная математика • Логические задачи
Студентам: Высшая алгебраВекторная алгебраАналитическая геометрияЧисленные методы
 

Эволюция математики XVI—XIX веков

Мое поколение математиков и физиков-теоретиков не ожидало встретить подобный кризис. В 50-х гг. XX в., когда мы учились в университетах, это сообщество стояло очень высоко. Позади было уже четыре-пять веков неуклонного развития наших наук. Думали, что так и будет продолжаться всегда. Эволюцию математики и математического мышления о законах природы в этот период я представляю себе так.

XVI в.: развилась алгебра многочленов; решили алгебраические уравнения 3-й и 4-й степени; как главный продукт было кардинально усовершенствовано учение о числе, ввели и начали использовать отрицательные и комплексные числа - отрицательные числа прижились сразу, а вот борьба за комплексные числа была долгой, до нашего времени.

XVII в.: появились координаты, позволившие перевести геометрию на язык алгебраических формул и расширить ее предмет; стал развиваться анализ; были сформулированы математические законы, лежащие в основе многих явлений природы, - вариационный принцип Ферма для световых лучей, принцип Галилея, закон Гука, универсальный закон гравитации, общие законы Ньютона. Возникли первые значительные прецеденты математического вывода законов природы из фундаментальных принципов (недостаточно оцененный современниками вывод закона преломления света на границе двух сред из вариационного принципа Ферма и вывод законов Кеплера Ньютоном, ставший основой современного научного метода). Появились идеи теории вероятностей.

XVIII в.:развитие анализа превратилось в мощный поток, включая линейные дифференциальные уравнения и метод собственных колебаний, вариационное исчисление и многое другое. Возникли дифференциальная геометрия, теория чисел, развилась теория вероятностей. Механика, включая небесную механику, стала зрелой далеко развитой наукой. Возникла гидродинамика.

XIX в.: математический ноток, включая теорию вероятностей, продолжает набирать силу. Возникает комплексный анализ; проблема разрешимости алгебраических уравнений порождает теорию римановьгх поверхностей и теорию групп; создается линейная алгебра; углубляется изучение симметрии и возникают алгебры Ли; геометрия, теория чисел, теория римановых поверхностей, теория дифференциальных уравнений, теория рядов Фурье и др. превращаются в мощные развитые дисциплины. Появились новые разделы физики со своими математическими законами: электричество и магнетизм, рожденная техникой термодинамика, затем -статистическая физика и кинетика. В конце XIX в. возникли первые ростки абстрактных разделов математики - такие, как теория множеств и функций действительного переменного. Возникли качественно-топологические разделы математики (качественная теория динамических систем и топология). Появились первые идеи математической логики.

В сообществе физиков стало утверждаться глубокое осознание недостаточности и даже противоречивости классической физики, построенной на механике Ньютона и законах классической электродинамики. Следует иметь в виду, что за этот период произошел грандиозный скачок в развитии технологии. Безусловно, развитие физики было в значительной мере его продуктом. Математическое понимание законов природы, о котором мы говорили, предварялось экспериментальными открытиями.

Такой пришла наша наука к началу XX в. Лидеры математики этого периода - Пуанкаре, Гильберт, Г.Вейль - олицетворяют собой рубеж, отделяющий XIX в. от XX, историю от «нашего» времени (нашего - в глазах моего поколения, для которого многие из математиков, выросших в 20-30-х гг. XX в., были старшими современниками, с которыми довелось общаться). Говоря о теоретической физике, предыстория завершается для меня вместе с Эйнштейном и Бором, т.е. с возникновением релятивистской и квантовой физики. Уже их, так сказать, научные преемники - это ученые, у которых учились люди моего поколения.

Я не претендую здесь на изложение истории. Да простят мне читатели, если я не назвал многих важных областей. Моя цель совершенно другая: продемонстрировать, что это развитие было мощным подъемом уровня знаний; прошлые достижения осваиваились следующими поколениями, подвергались унификации и упрощению. Новое органически соединялось со старым.



2007 (c) Ильдар Насибуллаев. Все права защищены. «Математика, доступная для всех» является частью «Научно-образовательного портала».
Перепечатка материалов возможна в объеме не более 5 страниц с указанием гипертекстовой ссылки на источник http://math.originweb.info/ и автора статьи.
Время создания страницы 0.0011 сек.