Главная • О сайте • О математиках • О математикеФилдсовская премияФорум
Школьникам: Занимательная математика • Логические задачи
Студентам: Высшая алгебраВекторная алгебраАналитическая геометрияЧисленные методы
 

9. Честность - лучшая политика

Хорошим математическим языком нужно пользоваться для того, чтобы облегчить читателю понимание предмета и, может быть даже, сделать процесс усвоения радостным. Такой стиль ценен не дешевым блеском, а предельной ненавязчивостыо. Цель в том, чтобы сгладить путь читателя, предвидеть и предвосхищать его трудности. Ясность — вот что желательно, а не педантизм; понимание, а не суетливость по пустякам.

Категоричность этих требований, возможно, и необходимая, может быть неверно понята; спешу уточнить. Когда я говорю, что нужно избегать педантизма и суетливости, я вовсе не имею в виду строгость и аккуратность; я верю, что одно другому не противоречит и не помышляю советовать молодому автору мошенничать, пусть самую малость и очень остроумно, или заниматься затушевыванием трудностей. Иногда, например, результат получается после громоздких вычислений и ничего лучше придумать не удается. В таком случае долг автора — публично выполнить эти вычисления; самое большее, что он может сделать для облегчения — выразить свое сострадание читателю какой-нибудь фразой вроде: «К сожалению, единственное известное доказательство состоит в следующем громоздком вычислении».

А вот пример того, что, на мой взгляд, является не вполне честным. Допустим, что в каком-то пункте изложения, бойко доказав некоторое предложение p, вы вдруг захотели сказать: «Заметим, однако, что из p не следует q», а потом, решив, что вы уже здóрово все объяснили, благополучно перешли к другим вещам. Ваши побуждения могут быть при этом совершенно чистыми, однако читатель все равно вправе чувствовать себя обманутым. Если бы ему было все известно о вашем предмете, он не читал бы написанного вами; вполне возможно, что указанное вами отсутствие импликации ему не ясно. Что это — очевидно? (Тогда так и скажите.) Или позднее будут даны контрпримеры? (Тогда пообещайте их теперь же.) Может быть, это — стандартный факт, имеющийся в литературе, но для ваших нынешних целей несущественный? (Дайте ссылку.) А может быть, страшно сказать, вы попросту безуспешно пытались вывести q из p, да так и не узнали, следует ли q из p на самом деле? (Немедленно признайтесь!) В любом случае: окажите читателю полное доверие.

Нет ничего плохого в использовании многократно осмеянных оборотов «очевидно» и «легко видеть», однако, есть минимальные ограничения, которые следует соблюдать. Написав, что нечто очевидно, вы наверное так и думали. Но когда, спустя месяц, или два, или шесть вы вынули рукопись и перечитали ее заново, вы по-прежнему продолжаете так считать? (Дозревание в течение нескольких месяцев всегда улучшает рукописи.) Когда вы объясняли это другу или на семинаре, было ли это место воспринято как очевидное? (Или кто-нибудь задавал вопросы и усаживался ворча, после ваших уговоров? Вы его убедили или запугали?) Ответы на эти риторические вопросы ограничивают использование слова «очевидно». Есть еще и другое правило, главное; его знает каждый; нарушение этого правила — самый частый источник математических ошибок; удостоверьтесь в том, что «очевидное» — верно.

Само собой разумеется, что вы пишете не для того, чтобы скрыть факты от читателя: вы пишете, чтобы раскрыть их. Я хочу этим сказать, что вы не должны утаивать от читателя истинного положения ваших утверждений в системе, как и вашего отношения к ним. Как только вы сообщаете что-нибудь, скажите читателю, было ли это уже доказано, или не было, будет ли это доказываться, или не будет. Подчеркивайте важное и сводите к минимуму тривиальности. Существует много хороших доводов в пользу очевидных утверждений, рассеянных там и сям по тексту, но об их очевидности нужно говорить, чтобы новичок видел их в должном свете. Даже если тот или иной читатель и рассердится на вас за это, вы поступаете правильно, сообщая ему вашу точку зрения на предмет. Но, конечно, вы должны подчиняться правилам. Не подводите читателя; он хочет вам верить. Претенциозность, обман и недомолвки могут обнаружиться не сразу, но большинство читателей вскоре почувствует, что что-то не так; тогда они будут винить не факты и не самих себя, а автора, как и должно быть. Абсолютная честность в изложении помогает максимальной ясности.



2007 (c) Ильдар Насибуллаев. Все права защищены. «Математика, доступная для всех» является частью «Научно-образовательного портала».
Перепечатка материалов возможна в объеме не более 5 страниц с указанием гипертекстовой ссылки на источник http://math.originweb.info/ и автора статьи.
Время создания страницы 0.0012 сек.